
Skinning Manual v1.0

Introduction
Centroid Skinning, available in CNC11 v3.15 r24+ for Mill and Lathe, allows developers to create their own
“front-end” or “skin” for their application. Skinning allows developers to create their own interface for
everything from simple, single screen applications to advanced multi-screen applications with 3D graphics.
Skinning provides several methods for your applications to send and receive information to and from
CNC11. File Based Communication, Packet Based Communication and a combination of the two.

Skinning Example

1. Download skinningbase.zip from www.centroidcnc.com
Extract the contents of the zip file to a folder in your Visual Studio 2015 projects folder named skinningbase.
This is a blank Winforms project that has all the .dll’s necessary to communicate with Cnc11 already
included. This project requires Cnc11 v3.15r24+ in order to run

2. Open the SkinningBase project in Visual Studio 2015
In Visual Studio 2015, select File→Open→Project and select the solution in the skinningbase folder.

3. Set the background image for Form
When the SkinningBase project is opened, Visual Studio opens the SkinningBase Form in “Design” mode.
Design mode means you can open the Toolbox and drag and drop buttons, text boxes, images, panels etc..
onto your form to use in your application. Click on the Form to select it. When a form or control is selected,
the available properties and action are displayed for that object in the Properties window. A Form has many
different properties available -height, width, background and foreground colors etc.. In this case, add a
background image to your form by expanding Appearance tab, clicking on BackgroundImage to highlight it.
Once highlighted a box will be displayed to the right with 3 periods (…) click on this, then select “Local
Resource” and “Import” to browse to the background image you wish to display. You can use
BackgroundImageLayout to tile, center, stretch or zoom the image as desired.

http://www.centroidcnc.com/

3. Add 3 buttons to Form
Select the Toolbox flyout and select “Button” then move your mouse over the Form and click drag to size
and place the buttons on the form. Expand the font properties and change the “Text” property for each button
to “Jog X -”, “Jog X +” and “Set X Pos”. You can also experiment with different font styles and sizes.

4. Add a TextBox and a Label
Select the Toolbox flyout and drag a TextBox and Label into the form. Expand the font properties and
change the “Text” property for the label to “X Position” and change the font size to 14. For the TextBox,
change the font size to 14. Move the Set X Pos up closer to the TextBox as shown below.

5. Make them do something
When a control is double clicked while in the Design view of a form, it opens up the “code behind” function
for that control. This is the code that executes if a button is clicked, the text in a TextBox changes etc.. It is in
this “code behind” that the Cnc11 interaction is defined.

6. Bind the text in the TextBox to the X axis position reported by Cnc11
In order to bind the content of the TextBox to the X axis position, the code below will use the Cnc11Packets
function getAbsPos() was used. This function reads the network traffic between Cnc11 and the
MPU11/Oak,Allin1dc to retrieve the positional data. In this example, a DispatchTimer has been defined to
perform operation(s) at a defined interval. This timer, updateTimer calls the function updateTimer_Tick() at
an interval of 50 milliseconds. This is the function that you would place the code that updates a DRO (like
the TextBox.)

Placing the code below in the function updateTimer_Tick will update the TextBox on your form with the
position of the 1st (X) axis as reported by the Cnc11Packets.getAbsPos(1) For instance:

*if(!textBox1.Focused() && !button3.Focused())
{
 //Get absolute encoder position of 1st axis and convert it to inches.
 double xAxisPosition = (Convert.ToDouble(Cnc11Packets.getAbsPos(1)) / 40000);

 //Create text format specifier for textbox
 string specifier = “0.0000”

 //Convert double to string and format as specified
 textBox1.Text = xAxisPosition.ToString(specifier);
}

*By only updating the TextBox if the user is not typing in it, the same TextBox can be used to both report
the position and set the position.

6. Wire the Set X Pos button to set the X axis part position in Cnc11.
In binding the content of the TextBox to the absolute position of the X axis as reported by Cnc11, the
Cnc11Packets function getAbsPos() was used. This function reads the network traffic between Cnc11 and
the MPU11/Oak,Allin1dc to retrieve the positional data. Skinning also has the ability to request action from
Cnc11 via file based commands. Further details on file commands and their usage can be found at the end of
this document. Double click the Set X Pos button in Design mode to open the click event handler for that
button. Note: Because the offset is not being added in the X axis position shown in the TextBox, you need to
watch Cnc11 to see that the x position actually changed to value you entered in the TextBox

private void button3_Click(object sender, EventArgs e)
{

 if(File.Exist(“c:\\cncm\\clientlocked.txt”))
 {
 MessageBox.Show(“Cnc11 is not running or is busy”);
 }
 else
 {//Tell Cnc11 a file command is coming

 using (File.Create("c:\\cncm\\clientwriting.txt")) { };

 //Create the file command loadcommand.txt and insert desired content
 string command = "G92 X" + textBox1.Text;
 FileStream loadcommand = new FileStream("c:\\cncm\\loadcommand.txt", FileMode.OpenOrCreate,
 FileAccess.Write);
 StreamWriter writer = new StreamWriter(loadcommand);
 writer.WriteLine(command);
 writer.Close();
 writer = null;
 //Tell Cnc11 the file command is ready to be processed
 File.Delete("c:\\cncm\\clientwriting.txt");
 }

 }

file://cncm//clientlocked.txt

6. Wire the Jog X– and Jog X+ buttons to jog the X axis.
If your PLC program supports Skinning, your apps can also interact with the PLC through the packet based
PLC functions. An example PLC program, Oak-skinned-mill.src is included in zip for this example
program. Install it in the cncm directory and compile it to run jog the machine from the SkinningBase
example. In the example project, find the event handlers for button1 and button2 MouseDown and MouseUp
events and the code as shown below:

 private void button1_MouseDown(object sender, EventArgs e)
 {
 Cnc11Packets.SetMemBit(2);
 }

 private void button1_MouseUp(object sender, EventArgs e)
 {
 Cnc11Packets.RstMemBit(2);
 }

 private void button2_MouseDown(object sender, EventArgs e)
 {
 Cnc11Packets.SetMemBit(3);
 }

 private void button2_MouseUp(object sender, EventArgs e)
 {
 Cnc11Packets.RstMemBit(3);
 }

File Based Communication with CNC11
Using File Based Communication, CNC11 monitors for the existence of certain files and then responds to the
existence and/content of these files. This is probably the simplest way to interact with CNC11 and can be
accomplished with as little as a text editor. CNC11 v3.16 monitors for existence of these files by default and
there is no action needed by the application programmer or the user to initiate this behavior.

The guidelines and procedure for using File Based Communications are as follows:

1. When CNC11 is not accepting commands from outside applications, it creates a file called clientlocked.txt
in the CNC11 root directory (c:\cncm for Mill or c:\cnct for Lathe). This file
on boot and at anytime that:

 a) The machine has not been homed.

b) A job is in progress or MDI is active.
c) The control is in any screen other than the main screen. (Setup, Config, etc..)
d) A fault condition is present.

2. When none of these conditions are active, CNC11 deletes clientlocked.txt to indicate is ready to accept
commands from outside applications.

3. Prior to creating a file based command, the application should confirm that clientwriting.txt does not exist
and create clientwriting.txt in the CNC11 root directory. It is VERY important that the application create and
confirm this file before creating any file commands as it Prevents CNC11 from performing file maintenance
or doing other background tasks that may interfere or conflict with the actions being requested.

4. After confirming the presence of clientwriting.txt in the CNC11 root directory, the application should
create any file commands that are required. If clientwiting.txt does not exist, CNC11 will attempt to process
any file commands present whether the application is finished writing them or not.

5. After writing the file command(s), the application should delete clientwriting.txt to trigger processing of
the file commands by CNC11.

6. CNC11 will delete all file commands after processing them and create servererror.txt if any errors
occurred while processing a file command.

File Based Commands

clientwriting.txt
When an application needs to command an action from CNC11, it should first create clientwriting.txt to
notify CNC11 that a file command is being prepared. This is very important as it Prevents CNC11 from
performing file maintenance or doing other background tasks that may interfere or conflict with the incoming
file command. This content of clientwriting.txt does not matter. The application should only create
clientwriting.txt after first confirming that clientlocked.txt does not exist. After an application has created
clientwriting.txt, it can now issue one or more of the following file based commands: Note: The file based
command(s) are performed by CNC11 when the clientwriting.txt file is deleted.

loadjob.txt
An application can notify CNC11 to load a new G code program by creating a file called loadjob.txt which
contains the path and job name that the appplication is requesting CNC11 to load. The path may be either
relative to the CNC11 root directory or absolute. Both examples below instruct CNC11 to load a job named

file:///c:/cnct
file:///c:/cncm

myjob.cnc which is located in c:\cncm\ncfiles. Note: loadjob.txt only loads a job, it does not run it.

 Content of loadjob.txt created in c:\cncm (CNC11 Mill root directory):

 Using relative path: .\ncfiles\myjob.cnc

 Using absolute path: c:\cncm\ncfiles\myjob.cnc

loadcommand.txt
An application can request that G or M code command, equivalent to an MDI command be performed
immediately. The application should create of file named loadcommand.txt in the CNC11 root directory. The
command is not case sensitive. Action(s) are performed by CNC11 when the clientwriting.txt file is deleted.
The contents can be any single line of valid G or M code:

G92 X1 Y2 Z3 ;Sets current X position to 1, Y to 2 and Z to 3
NOTE: Command runs immediately and does not require cycle start to initiate action or motion!

loadconfig.xml
An application creates this file to make changes to the configuration of cnc11. The contents should be a
complete, valid configuration file that includes any changes requested by the application. These
changes/contents are then stored in cncmcfg.xml for mill and cnctcfg.xml for lathe by CNC11 when the
clientwriting.txt file is deleted.

Loadparm.xml
 An application creates this file to make changes to the parameters of cnc11. The contents should be a
complete, valid parameter file that includes any changes requested by the application. These
changes/contents are then stored in cncm.parm.xml for mill and cnct.parm.xml for lathe by CNC11 when the
clientwriting.txt file is deleted.

servererror.txt
CNC11 writes any errors that occurred while processing file commands to this file. NOTE: File commands
received while clientlocked.txt exists are ignored and no errors are recorded.

file:///c:/cncm

Packet Based Communication with CNC11
Packet Based Communication with CNC11 is a very powerful method of interfacing with CNC11. It allows
application programmers to create modern, graphical applications applications in Visual Studio in any
number of languages including C#, Visual Basic and C++. An easy to use API is provided allowing any
application developed in these languages to asynchronously send and receive data with CNC11. The API
allows interfacing with the PLC, getting positional information from up to 8 axes, loading jobs, changing
CNC11 configurations etc.. This is definitely the most powerful and flexible way to interface your
application with CNC11.

Packet Based Functions:

PLC functions:

bool GetInputStatus(int)
GetInputStatus() passes an integer representing the input # the application is requesting the status (state) of..
GetInputStatus() returns true if the input is closed as viewed in CNC11, false if the input is open as viewed
in CNC11. Note: By “As viewed in CNC11”, it is meant that it will return the boolean value of the input
after CNC11 has applied any software inversions or forcing. An input that is electrically open, but has been
inverted by CNC11 will return true. Example usage:

bool myInputStatus = GetInputStatus(11); //Gets status of input 11 as viewed in CNC11

bool GetMemBitStatus(int)
GetMemBitStatus() passes an integer representing the memory bit # the application is requesting the status
(state) of.. GetMemBitStatus() returns true if the membit is SET, (1) as viewed in CNC11, false if the
membit is RST (0) as viewed in CNC11. Note: By “As viewed in CNC11”, it is meant that it will return the
boolean value of the membit after CNC11 has applied any software forcing. An membit that is has been
forced by CNC11 will return true regardless of what the logic the PLC program tried to set it to. Example
usage:

bool myMemBitStatus = GetMemBitStatus(20); //Gets status of membit as viewed in CNC11

SetMemBit(int)*
SetMemBit() passes an integer representing the memory bit # the application wishes to SET the state of..
*This function requires a PLC program to support it. (example included) Example usage:

SetMemBit(20); //SETS (1) membit 20*

Packet Based Functions:(cont)

PLC functions:(cont)

RstMemBit(int)*
RstMemBit() passes an integer representing the memory bit # the application wishes to RST the state of..
*This function requires a PLC program to support it. (example included) Example usage:

RstMemBit(20); //RST’s (0) membit 20*

bool GetOutputStatus(int)
GetOutputStatus() passes an integer representing the memory bit # the application is requesting the status
(state) of.. GetOutputStatus() returns true if the Output is SET, (1) as viewed in CNC11, false if the Output
is RST (0) as viewed in CNC11. Note: By “As viewed in CNC11”, it is meant that it will return the boolean
value of the Output after CNC11 has applied any software forcing. An Output that is has been forced by
CNC11 will return true regardless of what the logic the PLC program tried to set it to. Example usage:

bool myOutputStatus = GetOutputStatus(20); //Gets status of Output as viewed in CNC11

SetOutput(int)*
SetOutput() passes an integer representing the Output # the application wishes to SET the state of. *This
function requires a PLC program to support it. (example included) Example usage:

SetOutput(20); //SETS (1) Output 20*

RstOutput(int)*
RstOutput() passes an integer representing the Output # the application wishes to RST the state of. *This
function requires a PLC program to support it. (example included) Example usage:

RstOutput(20); //RST’s (0) Output 20*

int GetWordValue(int wordNumber)
GetWordValue() returns the value of 32bit integer PLC word #(W1-W128) specified by int wordNumber as
passed. (See SetSkinningDataWord() to set the value of a 32 bit PLC integer word)

int GetDWordValue(int wordNumber)
GetDWordValue() returns the value of 64bit integer PLC word #(DW1-DW128) specified by int
wordNumber as passed. (No function is available to set all 64 bits of a the value of a 64 bit integer PLC
word. See SetSkinningDataWord() to set 32 bits of the value of a 64 bit PLC word)

float GetFWordValue(int wordNumber)
GetFWordValue() returns the value of 32bit float PLC word # (FW1-FW128) specified by int wordNumber
as passed. (See SetSkinningDataFloatWord() to set the value of a 32 bit PLC float word)

float GetDFWordValue(int wordNumber)
GetDFWordValue() returns the value of 64bit float PLC word # (DFW1-DW128) specified by int
wordNumber as passed. (See SetSkinningDataDoubleFloatWord() to set the value of a 64 bit PLC float
word)

SetSkinningDataWord(int index, int32 value, bool sendImmediately = true)
Usage: Where index = # in SV_SKINNING_DATA_W#, value = value to set SV_SKINNING_DATA_W#
to and sendImmediately = send data to PLC on function call.

CNC11 v3.16+ provides 12 system variables, SV_SKINNING_DATA_W1-SV_SKINNING_DATA_W12,
to allow skinning to pass a 32 bit word values into the PLC. They are not directly mapped to any of the 32 bit
word values (W1-W128) in the PLC and must be explicitly mapped to PLC word values in the PLC program
if so desired.

PLC program mapping of a 32 bit integer PLC word value to a SV_SKINNING_DATA_W# value to allow
skinning to set the value of the PLC word.
Example, assuming the PLC program has declared MyWordValue_W IS W10:

PLC program statement:

IF TRUE THEN MyWordValue_W = SV_SKINNING_DATA_W1

Set PLC W10 (MyWordValue) value = 65536 when Skinning calls SetSkinningDateWord(1, 65536, true);.

Additionally, the PLC examples referenced by this document, utilize SV_SKINNING_DATA_W12 for the
calls to SetMemBit(), Rst MemBit(), SetOutput and RstOutput().

SetSkinningDoubleDataWord(int index, int32 value, bool sendImmediately = true)
Usage: Where index = # in SV_SKINNING_DOUBLE_DATA_W#, value = value to set
SV_SKINNING_DOUBLE_DATA_W# to and sendImmediately = send data to PLC on function call.

CNC11 v3.16+ provides 11 system variables, SV_SKINNING_DOUBLE_DATA_W1-
SV_SKINNING_DOUBLE_DATA_W12, to allow skinning to pass a 64 bit word values into the PLC. They
are not directly mapped to any of the 64 bit word values (W1-W128) in the PLC and must be explicitly
mapped to PLC word values in the PLC program if so desired.

